San José State University COSS/Psychology Statistics 245-01, Advanced Statistics, Fall 2025 #### **Course and Contact Information** Instructor: Gregory J. Feist Office Location: DMH 313 Telephone: (408) 924--5617 Email: greg.feist@sjsu.edu Office Hours: T TH 3-4pm; DMH 313 Class Days/Time: T TH 9-10:15AM Classroom: Hugh Gillis Hall 221 Final: Th Dec 11 (9am-11:59pm, online) Prerequisites: Stat 115 or instructor consent # Required Texts/Readings (Required) 1. Rebecca M. Warner (2021). Applied Statistics I: Basic Bivariate Techniques. Sage ISBN 978-1-5063-5280-0 \$84-183; eTextbook rental Amazon \$86 print rental; \$130 Print; \$106 Digital Purchase SJSU Textbook Store - 2. <u>JAMOVI</u> (menu-based stats program that is based in R language; we will also learn R) Get Latest features ver. 2.56 for Windows or 2.57 for MAC Get Starting Documents at https://docs.jamovi.org/ - 3. optional by recommended (free); Intro to R An Introduction to R: free online book (click here)` # Other technology requirements - R (http://cran.r-project.org/) - R Studio (http://www.rstudio.com) - R Markdown https://rmarkdown.rstudio.com/index.html Stat 245, Fall 2025 Page 1 of 8 #### **Course Information/Description** This course examines basic and more advanced principles of the logic of science and hypothesis testing, probability, descriptive statistics, graphing and plotting, data, significance testing, power, and various one-way Analyses of Variance (ANOVA). **This course assumes you have learned these procedures in previous courses**. We're going to cover a fair amount of somewhat complex material relatively quickly. You must have taken Stat115 or its equivalent to enroll in this course. As the primary goal of this course is to help you become an informed consumer and practitioner of research by being comfortable with data, we'll address these statistical procedures from a conceptual approach. Rather than getting caught up in their mathematical (i.e., matrix algebra) foundations, we'll focus on application and interpretation. For each procedure, we will cover three basic questions: what is it, why/when might one appropriately conduct, interpret, and communicate it. More specifically, for each procedure we'll address the following: - defining the procedure (what is it) - describing research situations where the procedure may be appropriate (why and when use it) - discussing underlying requirements and assumptions of the procedure (how use it appropriately) - conducting the analysis using computer software packages (how to conduct the analysis) - interpreting computer output (how to interpret the analysis) - identifying and addressing issues and problems that may arise in using the procedure - communicating the results of the analysis in standard APA format (how to communicate the analysis) A critical component of the class is the use of statistical software to conduct the procedures covered. As *R* is the most popular and readily available opensource software, we'll use it to create and execute files that define data and conduct statistical analyses. We'll go over the output generated from these analyses during class. # **Faculty Web Page and MYSJSU Messaging** Unless otherwise announced in class, all graded assignments will be accepted only in electronic form using the Canvas learning management system assignments page (Canvas is available at https://sjsu.instructure.com/). Having access to the Internet is your responsibility, so have backup plans in case you have problems with your primary computer. I cannot accept excuses about technology problems as valid, unless the entire University network or all of Canvas is offline. Supplementary course material will be made available on Canvas regularly. Communication regarding the course will be sent via the e-mail address linked to your MySJSU account or posted to Canvas. It is your responsibility to make sure you are enrolled in Canvas and receiving my e-mails. #### **Program Learning Outcomes (PLOs)** Upon successful completion of the requirements for the MA in Research and Experimental Psychology, students will be able to: Goal 1. Knowledge Base – Students completing the MA in Psychology program will understand the major theoretical perspectives and research methods across areas of experimental psychology, i.e., Developmental, Social, Cognitive, and Physiological. • PLO 1.1 – Understand the major theoretical perspectives and research methods across areas of experimental psychology, i.e., Developmental, Social, Cognitive, and Physiological. Stat 245, Fall 2025 Page 2 of 8 Goal 2. Research Methods & Scholarship – Graduates of our program will possess an advanced level of competence in research methods, statistical techniques, and technical writing skills. Students completing the MA in Psychology program are required to complete a thesis. The thesis will: - PLO 2.1 demonstrate creative problem-solving in the design, implementation of empirical research. - PLO 2.2 demonstrate project management skills in the implementation of empirical research. - PLO 2.3 demonstrate advanced competency in the statistical analysis and interpretation of empirical research findings. - PLO 2.4 be able to communicate (oral and written) their research findings at a professional level. Goal 3. Career Enhancement – Graduates of our program will experience career enhancement through placement in a doctoral program or acceptance of a position requiring a master's in psychology in the public or private sector. Students completing the MA in Psychology program will: • PLO 3.1 – achieve career enhancement through placement in a doctoral program or acceptance of a position requiring a master's in psychology in the public or private sector STAT 245 contributes to PLOs 2.1, 2.3, 2.4 and 3.1. #### **Course Learning Outcomes** The goals of this course are to help you: build a solid conceptual understanding of statistics in research, develop the practical skills to use statistics in your own research, and become a self-directed learner. Upon successful completion of this course, you will be able to: - CLO 1 Define and apply advanced statistical procedures, including those associated with: logic and ethics of quantitative analysis, probability theory, hypothesis testing, effect size, ANOVA and bivariate correlation - CLO 2 Describe which statistical procedures are appropriate for a given research situation - CLO 3 Discuss the underlying requirements and assumptions of statistical procedures - CLO 4 Conduct and interpret statistical analysis using computer software (R) - CLO 5 Communicate results of statistical analysis in APA style for scientific publication. The learning objectives will be assessed via written assignments and exam questions. The course learning objectives were adapted from those of Dr. Sean Laraway, Dr. Howard Tokunaga. and if applicable, for General Education (GE), American Institutions (AI), and Graduation Writing Assessment Requirement (GWAR) courses Information may be found in <u>Guidelines for GE, AI, GWAR</u> (http://www.sjsu.edu/senate/docs/2014geguidelines.pdf per <u>University Policy S14-5</u>, at http://www.sjsu.edu/senate/docs/S14-5.pdf) effective Fall 2014 Additional Readings will be made available on the Canvas site. #### **AI Policy** - → You may use generative AI tools on assignments in this course when I explicitly permit you to do so. Otherwise, you should refrain from using such tools. If you do use generative AI tools on assignments in this class, **you must properly document and credit the tools themselves. Cite the tool you used**, following the pattern for computer software given in the specified style guide. Additionally, please include a brief description of how you used the tool. - → If you choose to use generative AI tools, please remember that they are typically trained on limited datasets that may be out of date. Additionally, generative AI datasets are trained on pre-existing material, including Stat 245, Fall 2025 Page 3 of 8 copyrighted material; therefore, relying on a generative AI tool may result in plagiarism or copyright violations. Finally, keep in mind that the goal of generative AI tools is to produce content that seems to have been produced by a human, not to produce accurate or reliable content; therefore, relying on a generative AI tool may result in your submission of inaccurate content. It is your responsibility—not the tool's—to assure the quality, integrity, and accuracy of work you submit in any college course. - → As specified elsewhere in the syllabus, this course may require electronic submission of essays, papers, or other written projects through the originality assessment service Turnitin. Turnitin will also attempt to detect Algenerated text. - → If you use generative AI tools to complete assignments in this course, in ways that I have not explicitly authorized, I will apply the Code of Academic Integrity as appropriate to your specific case. In addition, you must be wary of unintentional plagiarism or fabrication of data. Depending on the specific circumstances, a first offense academic integrity violation related to misuse of generative AI could range anywhere from Level 1 to Level 3 under the Code of Academic Integrity. Repeated offenses could raise the violation to Level 4. Please act with integrity, for the sake of both your personal character and your academic record. #### **Course Requirements and Assignment** ## HomeWorks (19.4% of grade - 160 pts) Throughout this semester, there will be two main types of homework assignments. Both types of assignments will be submitted via Canvas as Google Docs, Word, or PDF files. 1. Statistical Analyses HomeWorks (13.3%) due @ 11:59 pm (110 points) The first type of homework, designed to help teach you to conduct and interpret the results of statistical analyses, asks you to open data files, to run analyses, and to post them on Canvas for grading. There will be **11 of these** assignments, each worth a maximum of **10 points**. NOTE: Depending on the assignment, **late homework** (turned in no later than one day past its original due date) may be accepted with a **deduction of 4 points/day**. 2. Evaluation/Questions/Comments on Readings (6.1%) due @ 11:59 pm on CANVAS (50 points) The second type of assignment consists of reading for that chapter and providing questions or comments you have about it. Have at least 2 questions/comments/observations per most weeks. There will be **10 of these question required assignments, each worth 5 points**. There is an **11**th that becomes extra credit if you do it. Because of the nature of these assignments, **late questions will not be accepted**. #### Class participation (6.1% of grade - 50 pts) Active student participation during class sessions is an essential component in graduate school, which means you need to make every effort to attend all class sessions. Missing more than 1 or 2 classes will result in a lower participation score. Discussion will also revolve around your weekly questions or comments so will also be considered part of "participation." There may be times when you feel confused, bemused, frustrated, or perturbed. I need and expect you to express your questions, thoughts, and feelings during class. There is no such thing as a stupid question – really! Class participation will be a determining factor for students whose course grade is 'borderline' (ie, slightly below the cutoff for the next highest grade). #### **Exams** (36.4% of grade - **300 pts**) There will be two midterm exams, each worth 150 points. The exams will address the ability to interpret computer output as well as discuss relevant conceptual and statistical issues. There will be no make-up exams without prior notification and agreement. Exams will be ONLINE (Canvas) from 12pm to 11:59pm day of exam. **Final examination** (18.2% of grade - **150 pts)** – **Dec 13th.** The final examination is non-cumulative (since 2nd exam) but will emphasize conceptual and pragmatic issues addressed throughout the semester. Stat 245, Fall 2025 Page 4 of 8 # Paper & Proposal (20% of grade - 165 pts) There will be one paper, **due Dec 8**th. The first part of this assignment is to turn proposal for your final paper. The **proposal is due Nov 13th** and **is worth 15 points**. The purpose of this full paper (approximately 8-10 pages in length) is to give you practice in conducting analyses on a set of data, interpreting the results of these analyses, and writing up the findings in standard APA format. It is worth **150 points**. You will pick a data set from class of your choosing and conduct any series of analyses we covered during the semester, write up the results with APA Tables and Figures. Make sure the analysis is not exactly one we did already in class or is in the book. That is, choose some variables in a data set not already chosen. That doesn't mean ALL variables must be completely new, but at least half of them. You may choose to do more than one statistical analysis on your dataset (e.g., factor analysis and sequential regression) but that is not required. You will need to include a full copy of your jamovi/R and output files. Late papers may be accepted with substantial penalty (10 points a day). It will be a full style APA paper, with intro, method, results, and discussion. Include Title page and Reference page in APA format (7th edition). - **Intro** should be only about 2 pages and review at least 10 papers (of your own finding) on that topic. Summarize the main findings and lead to the research questions you will be addressing in this paper. The intro should end with a clear statement of predictions or research questions. - Method section needs to match the sample and sample size in the data set, but the procedures (when and how data were collected) can be your own creation. If the data set describes and uses specific measures, then find them in the literature and describe them (and cite creators/original source). (also about 2 pages) - **Results** Write up full description of results as per Schumacker & APA Guide. Include at least one APA style table or figure in RMarkdown (about 1.5 to 2 pages). *Include your jamovi and R-scripts in an Appendix*. - **Discussion** (about 2 pages). Given your introduction and predictions, summarize your results, describe the implications of your findings. Also, describe the limitations of your design and results, and end with any unanswered questions and/or what is the next step in this line of research. The paper will be graded on - APA format: including title page, tables, results, figures, citations, and references (30 points) - Content: do you have all of the parts, including R-scripts in Appendix (40 points) - **Statistical Analysis:** were your statistics appropriate ones to answer your question/test your prediction? Were they done correctly? (45 points) - Interpretations: were your conclusions and interpretations of the output correct? (35 points) - Writing Style: how clearly do you write? Grammatical clarity? Need much editing? (70 points) # **Grading criteria (of 825 points)** | Grade | % | Point Range* | |-------|---------|--------------| | A+ | 95 & up | 780 & up | | Α | 92-94 | 755-779 | | A- | 90-91 | 738-754 | | B+ | 87-89 | 714-737 | | В | 82-86 | 672-713 | | B- | 80-81 | 656-671 | | C+ | 77-79 | 631-655 | Stat 245, Fall 2025 Page 5 of 8 | _ | 72.76 | E00 C20 | |-----|---------|-----------| | l C | 1 /2-/6 | 1 590-630 | | _ | | | *includes .5% bump up (e.g. 90% is really 89.5% points) # Rounding is Included in the Grading Scale The point totals reflect rounding up to the nearest percentage. For example, an A- would normally require 90%. With rounding, it only requires 89.5%. Because rounding is built in to the grading scale, your grade will be based on your final point total, rounded to the nearest whole percentage point (so 89.5% is an A-, but 89.4% is a B+). To be fair to everyone in the class, these are firm cutoffs, so please don't ask for additional bumping up. #### **Classroom Protocol** Respectful disagreement and debate are encouraged. However, unprofessional, disrespectful, or disruptive behavior is a violation of the Student Code of Conduct, available at http://www.sjsu.edu/studentconduct/docs/Student%20Conduct%20Code%202013.pdf. Such behavior may result in being asked to leave the class and/or referrals to the Office of Student Conduct and Ethical Development. # **University Policies** Per University Policy S16-9, university-wide policy information relevant to all courses, such as academic integrity, accommodations, etc. will be available on Office of Graduate and Undergraduate Programs' Syllabus Information web page at http://www.sjsu.edu/gup/syllabusinfo/ You must obtain the instructor's permission to make any audio or video recordings in this class. Success in this course is based on the expectation that students will spend, for each unit of credit, a minimum of 45 hours over the length of the course (normally three hours per unit per week) for instruction, preparation/studying, or course related activities, including but not limited to internships, labs, and clinical practica. Other course structures will have equivalent workload expectations as described in the syllabus. Stat 245, Fall 2025 Page 6 of 8 # **Course Schedule** | Week | Date | Book Chapter/Topic/Lecture | HomeWorks (usually due Sunday) Discussion Questions (due Wed) | |------|------------------------|--|--| | 1 | Aug
21 | Ch1 Lec 1 Introduction to Advanced Statistics | | | 2 | Aug
26-28 | Ch1 Lec 2: Evaluating Numerical Information Ch 2 Lec 3: Basic Research Concepts | Ch 1 Questions: Due Aug 27 (11:59pm) | | 3 | Sept
2-4 | Ch 2: Lec 3: Basic Research Concepts
Lec 4: R & Jamovi Basics | Introduction to R: https://youtu.be/yYa9WBkja4k Load Data in R: https://youtu.be/zwY8 Ikp0B0 Quick tips for coding in R: https://youtu.be/5TcE-TTne0k Intro2r (a good book for R and RMarkdown) Homework #1 (R & Jamovi Basics) Sept 7 | | 4 | Sept
9-11 | Ch 4 Lec 5: Descriptive Statistics Ch 4: Lec 5: Descriptive Statistics | (11:59pm) Ch 4 Questions Sept 8 (11:59pm) Homework #2 (Descriptive Stats) Sept 14 (11:59pm) | | 5 | Sept
16-18 | Ch 5: Lec 6 Graphing in jamovi
Ch 6 Lec 7: Normal Distribution,
Skewness and Z-scores | Ch 5 Questions Due Sept 15 Intro2r: Ch 8: Reproducible Reports in R Creating Graphs with ggplot2 https://www.youtube.com/watch?v=K418swtFnik Homework #3 Sept 21 (11:59pm) | | 6 | Sept
23-25 | Ch 6 Lec 7: Normal Distribution,
Skewness and Z-scores | Ch 6 Questions Due Sept 22 (11:59pm) Homework #4 Sept 28 (Normal Distribution, Skewness (11:59pm) | | 7 | Sept
30
Oct
2 | Review for Exam 1 Exam 1 (Wed Oct 1) Lec 8 Bayesian Stats (Lecture) Watch Bayes Theorem, The Geometry of Changing Beliefs | (optional but recommended: read Kruschke & Liddle 2018, "Bayesian data analysis for newcomers" in Canvas Files Readings) | | 8 | Oct
7-9 | Lec 8 Bayesian Stats (Lecture) Ch 7: Lec 9: Sampling Error and Confidence Intervals (frequentist) & Credibility Interval (Bayesian) | Bayesian (video & lecture) Questions Due Oct 6 (11:59pm) Homework #5: Bayesian Probabilities & Odds Oct 12 | | 9 | Oct
14-16 | Ch 7: Lec 9: Confidence Intervals (frequentist) & Credibility Interval (Bayesian) | Ch 7 Questions Due Oct 13 (11:59pm) Homework#6 (Sampling Error & CI) Oct 19 (11:59) | | 10 | Oct
21-23 | Ch 9 Lec 10 Significance Testing, Effect Size & Power; | Ch 9 Questions Due Oct 22
Homework #7 (Significance Testing/Effect Size
Oct 26 (11:59pm) | | 11 | Oct 28 | Ch 9 Lec 10 Significance Testing, Effect
Size & Power; Review
Exam 2 (Wed Oct 29) | | Stat 245, Fall 2025 Page 7 of 8 | | Oct 30 | Ch 13: Lec 11 One-Way ANOVA | | |----|--------|-------------------------------------|--| | 12 | Nov | Ch 13: Lec 11: One-way ANOVA | Ch 13 Questions Due Nov 3(11:59pm) | | | 4-6 | Ch 15: Lec 12 One-Way Repeated | Homework #8 (ANOVA) Nov 9 (11:59pm) | | | | ANOVA | | | 13 | Nov | Ch 15: Lec 12 One-Way Repeated | Ch 15 Questions Due Nov 10 (11:59pm) | | | 11-13 | ANOVA | Homework #9 Repeated Measures ANOVA | | | | Paper Topic/Outline Due (Th Nov 13) | Nov 16 (11:59pm) | | 14 | Nov | Ch 16: Lec 13: Factorial ANOVA | Ch 16 Questions Due Nov 19 (11:59pm) | | | 18-20 | | | | 15 | Nov | Ch 16: Lec 13: Factorial ANOVA | Homework #10: Factorial ANOVA (Nov 30) | | | 25 | Thanksgiving Nov 27 (NO CLASS) | | | 16 | Dec | Ch 10: Lec 14: Correlation | Ch 10 Questions Due Dec 1 (extra credit) | | | 2-4 | Final Paper Due | Homework #11 Correlation Dec 7 (11:59pm) | | | Dec 8 | | | | | Thur | Final Exam (9am-11:59pm, Canvas) | | | | Dec 11 | | | Stat 245, Fall 2025 Page 8 of 8